mn create-app example.micronaut.micronautguide \
--features=mongo-reactive,reactor,graalvm,serialization-bson \
--build=maven
--lang=kotlin
Table of Contents
Micronaut MongoDB Asynchronous
Learn how to use a non-blocking reactive streams MongoDB client with a Micronaut application
Authors: Sergio del Amo
Micronaut Version: 3.9.2
1. Getting Started
In this guide, we will create a Micronaut application written in Kotlin.
You will use MongoDB for persistence.
2. What you will need
To complete this guide, you will need the following:
-
Some time on your hands
-
A decent text editor or IDE
-
JDK 1.8 or greater installed with
JAVA_HOME
configured appropriately
3. Solution
We recommend that you follow the instructions in the next sections and create the application step by step. However, you can go right to the completed example.
-
Download and unzip the source
4. Writing the Application
Create an application using the Micronaut Command Line Interface or with Micronaut Launch.
If you don’t specify the --build argument, Gradle is used as the build tool. If you don’t specify the --lang argument, Java is used as the language.
|
The previous command creates a Micronaut application with the default package example.micronaut
in a directory named micronautguide
.
If you use Micronaut Launch, select Micronaut Application as application type and add mongo-reactive
, reactor
, graalvm
, and serialization-bson
features.
If you have an existing Micronaut application and want to add the functionality described here, you can view the dependency and configuration changes from the specified features and apply those changes to your application. |
4.1. POJO
Create Fruit
POJO:
package example.micronaut
import io.micronaut.core.annotation.Creator
import io.micronaut.serde.annotation.Serdeable
import org.bson.codecs.pojo.annotations.BsonCreator
import org.bson.codecs.pojo.annotations.BsonProperty
import javax.validation.constraints.NotBlank
@Serdeable (1)
data class Fruit @Creator @BsonCreator constructor( (4)
@field:BsonProperty("name") @param:BsonProperty("name") @field:NotBlank val name: String, (2) (3)
@field:BsonProperty("description") @param:BsonProperty("description") var description: String?) { (3)
constructor(name: String) : this(name, null)
}
1 | Declare the @Serdeable annotation at the type level in your source code to allow the type to be serialized or deserialized. |
2 | Use javax.validation.constraints Constraints to ensure the data matches your expectations. |
3 | Since the POJO does not have an empty constructor, use the annotations @BsonCreator and BsonProperty to define data conversion between BSON and POJO with the MongoDB Java driver. See POJOs without No-Argument Constructor. |
4 | Annotate with @Creator to provide a hint as to which constructor is the primary constructor. |
4.2. Repository
Create a repository interface to encapsulate the CRUD actions for Fruit
.
package example.micronaut
import org.reactivestreams.Publisher
import reactor.core.publisher.Mono
import javax.validation.Valid
interface FruitRepository {
fun list(): Publisher<Fruit>
fun save(@Valid fruit: Fruit): Mono<Boolean> (1)
}
1 | Add @Valid to any method parameter which requires validation. |
4.3. Controller
Create FruitController
:
package example.micronaut
import io.micronaut.http.HttpStatus
import io.micronaut.http.HttpStatus.CONFLICT
import io.micronaut.http.HttpStatus.CREATED
import io.micronaut.http.annotation.Controller
import io.micronaut.http.annotation.Get
import io.micronaut.http.annotation.Post
import org.reactivestreams.Publisher
import reactor.core.publisher.Mono
import javax.validation.Valid
@Controller("/fruits") (1)
open class FruitController(private val fruitService: FruitRepository) { (2)
@Get (3)
fun list(): Publisher<Fruit> = fruitService.list()
@Post (4)
open fun save(@Valid fruit: Fruit): Mono<HttpStatus> { (5)
return fruitService.save(fruit) (6)
.map { added: Boolean -> if (added) CREATED else CONFLICT }
}
}
1 | The class is defined as a controller with the @Controller annotation mapped to the path /fruits . |
2 | Use constructor injection to inject a bean of type FruitRepository . |
3 | The @Get annotation maps the list method to an HTTP GET request on /fruits . |
4 | The @Post annotation maps the save method to an HTTP POST request on /fruits . |
5 | Add @Valid to any method parameter which requires validation. |
6 | Micronaut controller methods can return reactive types |
4.4. Configuration
Create a configuration object to encapsulate the MongoDB database name and collection name.
package example.micronaut
import io.micronaut.context.annotation.ConfigurationProperties
import io.micronaut.core.naming.Named
@ConfigurationProperties("db") (1)
interface MongoDbConfiguration : Named {
val collection: String
}
1 | The @ConfigurationProperties annotation takes the configuration prefix. |
Define the values via configuration:
db:
name: 'fruit'
collection: 'fruit'
4.5. MongoDB repository
Implement FruitRepository
by using a MongoClient
package example.micronaut
import com.mongodb.reactivestreams.client.MongoClient
import com.mongodb.reactivestreams.client.MongoCollection
import io.micronaut.core.annotation.NonNull
import jakarta.inject.Singleton
import org.reactivestreams.Publisher
import reactor.core.publisher.Mono
import javax.validation.Valid
@Singleton (1)
open class MongoDbFruitRepository(
private val mongoConf: MongoDbConfiguration, (2)
private val mongoClient: MongoClient) : FruitRepository { (3)
override fun save(@Valid fruit: Fruit): Mono<Boolean> =
Mono.from(collection.insertOne(fruit)) (4)
.map { true }
.onErrorReturn(false)
@NonNull
override fun list(): Publisher<Fruit> = collection.find() (4)
private val collection: MongoCollection<Fruit>
get() = mongoClient.getDatabase(mongoConf.name)
.getCollection(mongoConf.collection, Fruit::class.java)
}
1 | Use jakarta.inject.Singleton to designate a class as a singleton. |
2 | Use constructor injection to inject a bean of type MongoDbConfiguration . |
3 | Use constructor injection to inject a bean of type MongoClient . |
4 | MongoClient methods return reactive sequences. |
By using the feature mongo-reactive
, the application includes the following dependency:
<dependency>
<groupId>io.micronaut.mongodb</groupId>
<artifactId>micronaut-mongo-reactive</artifactId>
<scope>compile</scope>
</dependency>
This registers a non-blocking reactive streams MongoDB client with MongoClient, which you can inject in other Micronaut beans as illustrated in the above code sample.
4.6. Test
Add a Micronaut declarative HTTP Client to src/test
to ease the testing of the application’s API.
package example.micronaut
import io.micronaut.http.HttpStatus
import io.micronaut.http.annotation.Get
import io.micronaut.http.annotation.Post
import io.micronaut.http.client.annotation.Client
import javax.validation.Valid
@Client("/fruits")
interface FruitClient {
@Post
fun save(@Valid fruit: Fruit): HttpStatus
@Get
fun findAll(): List<Fruit>
}
By using the feature mongo-sync
, the application includes the following test dependencies:
<dependency>
<groupId>org.testcontainers</groupId>
<artifactId>junit-jupiter</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.testcontainers</groupId>
<artifactId>mongodb</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.testcontainers</groupId>
<artifactId>testcontainers</artifactId>
<scope>test</scope>
</dependency>
Test Resources will provide us with a MongoDB instance for local testing and execution.
Create a test:
package example.micronaut
import io.micronaut.http.HttpStatus.CREATED
import io.micronaut.test.extensions.junit5.annotation.MicronautTest
import org.junit.jupiter.api.AfterAll
import org.junit.jupiter.api.Assertions.assertEquals
import org.junit.jupiter.api.Assertions.assertFalse
import org.junit.jupiter.api.Assertions.assertNull
import org.junit.jupiter.api.Assertions.assertTrue
import org.junit.jupiter.api.Test
import org.junit.jupiter.api.TestInstance
import org.junit.jupiter.api.TestInstance.Lifecycle
@MicronautTest
@TestInstance(Lifecycle.PER_CLASS)
class FruitControllerTest {
@Test
fun fruitsEndpointInteractsWithMongo(fruitClient: FruitClient) {
var fruits = fruitClient.findAll()
assertTrue(fruits.isEmpty())
var status = fruitClient.save(Fruit("banana"))
assertEquals(CREATED, status)
fruits = fruitClient.findAll()
assertFalse(fruits.isEmpty())
assertEquals("banana", fruits[0].name)
assertNull(fruits[0].description)
status = fruitClient.save(Fruit("Apple", "Keeps the doctor away"))
assertEquals(CREATED, status)
fruits = fruitClient.findAll()
assertTrue(fruits.any { (_, description): Fruit -> "Keeps the doctor away" == description })
}
}
5. Test Resources
When the application is started locally — either under test or by running the application — resolution of the property mongodb.uri
is detected and the Test Resources service will start a local MongoDB docker container, and inject the properties required to use this as the datasource.
When running under production, you should replace this property with the location of your production MongoDB instance via an environment variable.
MONGODB_URI=mongodb://username:password@production-server:27017/databaseName
For more information, see the MongoDB section of the Test Resources documentation.
6. Testing the Application
To run the tests:
./mvnw test
7. Running the Application
To run the application, use the ./mvnw mn:run
command, which starts the application on port 8080.
curl -d '{"name":"Pear"}'
-H "Content-Type: application/json"
-X POST http://localhost:8080/fruits
curl -i localhost:8080/fruits
HTTP/1.1 200 OK
date: Wed, 15 Sep 2021 12:40:15 GMT
Content-Type: application/json
content-length: 110
connection: keep-alive
[{"name":"Pear"}]
8. Generate a Micronaut Application Native Executable with GraalVM
We will use GraalVM, the polyglot embeddable virtual machine, to generate a native executable of our Micronaut application.
Compiling native executables ahead of time with GraalVM improves startup time and reduces the memory footprint of JVM-based applications.
Only Java and Kotlin projects support using GraalVM’s native-image tool. Groovy relies heavily on reflection, which is only partially supported by GraalVM.
|
8.1. Native executable generation
The easiest way to install GraalVM on Linux or Mac is to use SDKMan.io.
sdk install java 22.3.r11-grl
If you still use Java 8, use the JDK11 version of GraalVM. |
sdk install java 22.3.r17-grl
For installation on Windows, or for manual installation on Linux or Mac, see the GraalVM Getting Started documentation.
After installing GraalVM, install the native-image
component, which is not installed by default:
gu install native-image
To generate a native executable using Maven, run:
./mvnw package -Dpackaging=native-image
The native executable is created in the target
directory and can be run with target/micronautguide
.
Consume the endpoints exposed by the native executable with cURL:
curl -d '{"name":"Pear"}'
-H "Content-Type: application/json"
-X POST http://localhost:8080/fruits
curl -i localhost:8080/fruits
HTTP/1.1 200 OK
date: Wed, 15 Sep 2021 12:40:15 GMT
Content-Type: application/json
content-length: 110
connection: keep-alive
[{"name":"Pear"}]
9. Next steps
Explore more features with Micronaut Guides.
10. Next Steps
Read more about the integration between the Micronaut framework and MongoDB.
11. Help with the Micronaut Framework
The Micronaut Foundation sponsored the creation of this Guide. A variety of consulting and support services are available.